

Merge combines trees, and checks out the result •
Pull does a fetch, then a merge •

If you only can remember one command:
git --help	 	 	 	 	 Get common commands and help
git <command> --help	 How to use <command>

git
Version: 2.0b

Features of changeset design:

Only changes stored, compressed -> Very efficient •
Random hashes: multiple people can make commits locally
•

The current working copy has a
special name: "HEAD"

Tags and branches are
just pointers

These are changesets, the
building blocks of git

Each commit creates a
changes with a random
hash

Handy commands:
git status		 	 Show lots of useful details

git log		 	 	 Show history (--pretty=oneline)
git add -u		 	 Add all changed files
git diff	 	 	 Show changes vs. staging area
git diff HEAD	 Show changes vs. last commit

Get an existing repository: (see later page for more options)

git clone git@github.com:<username>/<repo>.git

Make a new repository:
git init
git remote add <repository> origin
<add files, commit>
git push -u origin master

Standard procedure:
git pull
git add <files>
git commit -m “My message”
git push

Tagging:
git tag		 	 	 	 	 List all tags
git tag <tag name> -a	 Make a new tag (annotated)
git push --tags	 	 	 Push tags to remote

Standard names:

Remotes: Computers to push to or pull from •
origin: The default name for the first remote ◦

Branches: A moving pointer to commits •
master: The default name for the first branch ◦
origin/master: Remote branches are also available ◦
HEAD: Special term for the latest commit ◦

Tags: Like branches, but usually stationary •

Changing to new commit:
git checkout <existing>	 	 Checkout commit, tag, or branch
git checkout -b <branch>	 	 Make new branch and checkout
git checkout HEAD^	 	 	 Go back one commit

Helpful extra tools:
git grep “term”	 	 	 Search text only in repository (fast)
git ls-files		 	 	 	 List files in repository

Useful but dangerous commands:
git reset	 	 	 	 Unstage staging area, no change to working copy
git reset <commit>	 Move current branch pointer
git reset --hard	 	 Wipe all working copy changes
git stash	 	 	 	 Put all changed files in a local stash
git stash apply	 	 Put last stash back in working dir
git stash pop		 	 Like above, but also remove stash

Combing changes:
git pull --rebase	 	 	 Rewind history, then replay changes
 Much nicer history!

What happens if there is a conflict?
Different files changed -> both added •
Different parts of one file -> both parts •
Changes to the same line(s) -> "Merge confict", presents diff •

Use git mergetool for graphical solution ◦
Or just edit the file and git add ◦

Why use git pull instead of git pull --rebase?

Less typing •
Slightly easier; rebase will not run if there are working copy changes •

Just git stash, git pull --rebase, and then git stash pop ◦

Special files:
.git/config Local configuration (easy to edit)
.gitignore Any file listed will not be shown or (easily) added
.gitkeep Undo gitignored files
.gitmodule Used by git submodule (below)

Git ignore files:

Can be in any directory (only affects directory and •
subdirectories)
Prepared .gitignore files for many languages (LaTeX, •
C++, Python, etc) are available
Always add at least editor autosave files! •
Use git status --ignored to see ignored files •

Advanced: SubModules
Following commands must not be run in sub directory
git submodule add ../../<username>/<reponame>.git local_dir
	 	 Adds a git repo as a sub directory
git submodule update --init --recursive
	 	 Initializes and updates modules (needed after clone)
git submodule deinit -f .
	 	 Wipe out all submodule checkouts (fixes problems in URLs)

All submodules behave like normal repositories when inside them
Adding the submodule like a normal file remembers the git hash of the module

https://github.com/
github/gitignore

Advanced: Cloning
git clone <url> <local folder>
--depth=N Only download last N commits
--recursive Also get all submodules
--branch=<branch> Auto-checkout a branch

Advanced: History rewriting
These are safe if you have not pushed changes
git commit --amend Modify last commit (staging area or change msg)
git merge --squash ...	 See online for usage, combines commits
If you are working on your own branch, this can be used:
git push -f Push changed history

Online:
Fork: A copy of a git repository you own
Pull request or Merge request: Merge your branch or fork to original repository
Issues: A place to ask or report things
Mentions: Use @username or #number to mention user or issue/pull request

Gitisms: (how one works in git)
Make a branch, work in it, merge with rebase or squash, throw away branch
First line of a commit message is overview, and shown in logs/online lists
Commit often, but each commit should run/compile

